Constant Function Market Makers (CFMMs) are a family of automated market makers that enable censorship-resistant decentralized exchange on public blockchains. Arbitrage trades have been shown to align the prices reported by CFMMs with those of external markets. These trades impose costs on Liquidity Providers (LPs) who supply reserves to CFMMs. Trading fees have been proposed as a mechanism for compensating LPs for arbitrage losses. However, large fees reduce the accuracy of the prices reported by CFMMs and can cause reserves to deviate from desirable asset compositions. CFMM designers are therefore faced with the problem of how to optimally select fees to attract liquidity. We develop a framework for determining the value to LPs of supplying liquidity to a CFMM with fees when the underlying process follows a general diffusion. Our approach also allows one to select optimal fees for maximizing LP value. We illustrate our methodology by showing that an LP with mean-variance utility will prefer a CFMM over all alternative trading strategies as fees approach zero.
Full Paper here.